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1 WHAT ARE WE TRYING TO DO HERE?

We want to spend some time thinking about raindrops and air resistance. In particular, we
want to find a function vy (t ) which maps time t to the velocity of a falling raindrop.

We assume that our mathematical raindrop has both a constant mass and a fixed shape. Fur-
thermore, we assume that there is no wind and the only forces governing the raindrops move-
ment are Fg (gravitational pull) and Fr (air resistance).

Ftot = Fg −Fr (1.1)

The air resistance in our model is proportional to vy (t )2.1 We also introduce air resistance
coefficient k which allows us to adjust our air resistance curve to be as close as possible to
the real air resistance a falling drop would experience at fairly high velocities.

Fr = k · vy (t )2 (1.2)

But what is a good value for k? Seeking for a fitting coefficient k, we stumble upon a 1969
paper by G. B. Foote and P. S. Du Toit titled Terminal Velocity of Raindrops Aloft. 2

Armed with this paper, we go through a few steps which conclude in a value for our air resis-
tance coefficient k. First, we use figure 2 on page 251 to determine the terminal velocity V of
a raindrop with a diameter of 5[mm] at an atmospheric pressure of 1013[mbar] and get

V = 9.1[ms−1]. (1.3)

1Quadratic drag models the air resistance sensibly at high velocities (i.e. high Reynolds number, Re > 1000). Our
raindrop has a Re of about 3000.

2https://journals.ametsoc.org/doi/pdf/10.1175/1520-0450%281969%29008%3C0249%3ATVORA%3E2.0.CO%3B2
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Next we use the terminal velocity V , the radius r and the kinematic viscosity of the air ν to
calculate Reynolds number Re .

Re = 2r V

ν
(1.4)

= 2 ·0.0025[m] ·9.1[ms−1]

1.516 ·10−5[m2 s−1]
(1.5)

= 3001.0 (1.6)

Now that we’ve got Reynolds number for our specific raindrop, we are able to get drag coef-
ficient CD by consulting figure 1 on page 250. We get a value of 0.645. Armed with the drag
coefficient CD , radius r and air density ρ, we are finally able to calculate the magnitude of air
resistance coefficient k using equation (1) on page 249.

k = 1

2
ρCDπr 2 (1.7)

= 1

2
·1.225[kgm−3] ·0.645 ·π ·6.25 ·10−6[m2] (1.8)

= 7.757 ·10−6[kgm−1] (1.9)

Note how the air resistance coefficient k comes with the SI units [kg m−1]. When using k in
(1.2) we expect the resulting SI units to be [kg m s−2].

Fr = k · vy (t )2 (1.10)

[kgms−2] = [kgm−1] · [m2 s−2] (1.11)

= [kgms−2] (1.12)

And indeed, [kg m s−2] is what we get.

2 THE EQUATION OF MOTION

Now we are finally ready to construct and solve the differential equation of our raindrop
model. We start by taking a closer look at equation (1.1). Here it is again:

Ftot = Fg −Fr . (1.1)

Adding all the Forces working on our raindrop yields Ftot . And since Ftot accounts for all the
forces, we can use it to calculate the resulting acceleration by inserting the famous

F = m ·ay (t ). (2.1)

Doing this, we get

m ·ay (t ) = Fg −Fr . (2.2)
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Next we insert the following two equations

Fg = m · g (2.3)

Fr = k · vy (t )2 (1.2)

(g being the acceleration of gravity) into (2.2) and get

m ·ay (t ) = m · g −k · vy (t )2. (2.4)

And finally, we rewrite ay (t ) as the derivative of vy (t ) and arrive at

m · d

d t
vy (t ) = m · g −k · vy (t )2. (2.5)

Now we got the newtonian equation of motion for our raindrop. We want to find a specific
function vy (t ) which, when plugged into this equation satisfies it at any value t.

3 SOLVING THE DIFFERENTIAL EQUATION

We start by tidying up (2.5) by dividing both sides of the equation by m

d

d t
vy (t ) = g − k

m
· vy (t )2 (3.1)

Next we get everything ready for the first ingenious math technique by isolating g

d

d t
vy (t ) = g

(
1− k

g m
· vy (t )2

)
(3.2)

and introducing β as a placeholder variable to get rid of some of the clutter:

β2 = k

g m
(3.3)

this placeholder variable enables us to rewrite (3.2) as

d

d t
vy = g

(
1−β2v2

y

)
(3.4)

= g
(
12 − (βvy )2) (3.5)

= g
(
(1−βvy ) · (1+βvy )

)
(3.6)

Starting at (3.40) we are shortening vy (t ) to vy to make the equations easier to read. Now we
divide both sides of the equation by the expression in the brackets. This yields

1

(1−βvy ) · (1+βvy )
· d vy

d t
= g . (3.7)
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Next we switch around the terms to make the equation a bit more pleasant to look at.

g = 1

(1−βvy ) · (1+βvy )
· d vy

d t
(3.8)

We take the integral with respect to t on both sides of the equation.∫
g ·d t =

∫
1

(1−βvy ) · (1+βvy )
· d vy

d t
·d t (3.9)

The left side of the equation becomes g ·t+C1. C1 being the constant of integration. But what
about the right side?

g · t +C1 =
∫

1

(1−βvy ) · (1+βvy )
· d vy

��d t
·��d t (3.10)

=
∫

1

(1−βvy ) · (1+βvy )
·d vy (3.11)

The two d t disappear leaving us with with an integral with respect to d vy . The disappearance
of the two d t terms is due to what can be described as doing the inverse of integral substitu-
tion. And this is the first ingenious math technique used on the journey to the solution of this
differential equation.

But we still need to actually solve the integral on the right side. What holds us back is the
squared vy , which emerges as soon as we multiply out all the terms in the denominator. But
why did we rearrange the terms in the denominator anyway? This is because we are about
to use partial-fraction decomposition on it. We want to concentrate on the partial-fraction
decomposition, so let’s forget about the integral and let p be the fraction inside the integral
of equation (3.11).

p = 1

(1−βvy ) · (1+βvy )
(3.12)

Let’s examine the nominator. It is 1. What if we defined the following equation?

1 = A · (1−βvy )+B · (1+βvy ) (3.13)

Equation (3.13) also evaluates to 1, so clearly we are able to insert it in the nominator of equa-
tion (3.12) which gives us

p = A · (1−βvy )+B · (1+βvy )

(1−βvy ) · (1+βvy )
(3.14)

= A ·�����(1−βvy )

�����(1−βvy ) · (1+βvy )
+ B ·�����(1+βvy )

(1−βvy ) ·�����(1+βvy )
(3.15)

= A

1+βvy
+ B

1−βvy
(3.16)

4



The resulting equation (3.16) will allow us to finally compute the integral in (3.11). The only
thing left to do is to get specific values for A and B. Clearly, equation (3.13) doesn’t hold true
for any value A and B . But what are the values which, when inserted, keep (3.13) satisfied no
matter what magnitude vy (t ) takes on? Since equation (3.13) has to hold true for any value a
generic function vy (t ) might return, it also has to hold true for the following two cases:

vy (t ) = 1

β
(3.17)

vy (t ) =− 1

β
(3.18)

Inserting (3.17) into (3.13) yields

1 = A

(
1−β · 1

β

)
+B

(
1+β · 1

β

)
(3.19)

= A

(
1− ��β · 1

��β

)
+B

(
1+ ��β · 1

��β

)
(3.20)

= A(1−1)+B(1+1) (3.21)

= A0+B2 (3.22)

= 2B. (3.23)

From (3.23) we conclude that

B = 1

2
. (3.24)

Likewise, inserting (3.18) into (3.13) yields

1 = A

(
1−β ·− 1

β

)
+B

(
1+β ·− 1

β

)
(3.25)

= A

(
1+β · 1

β

)
+B

(
1−β · 1

β

)
(3.26)

= A

(
1+ ��β · 1

��β

)
+B

(
1− ��β · 1

��β

)
(3.27)

= A(1+1)+B(1−1) (3.28)

= A2+B0 (3.29)

= 2A. (3.30)

From (3.32) we conclude that

A = 1

2
. (3.31)

We insert above results for A and B into equation (3.16) and get

p = 1

2

(
1

1+βvy
+ 1

1−βvy

)
. (3.32)
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Let’s put p back into 3.11 and finally calculate the integral.

g t +C1 = 1

2

∫ (
1

1+βvy
+ 1

1−βvy

)
d vy (3.33)

2g t +C2 =
∫ (

1

1+βvy
+ 1

1−βvy

)
d vy (3.34)

=
∫

(1+βvy )−1d vy +
∫

(1−βvy )−1d vy (3.35)

= 1

β
ln

∣∣1+βvy
∣∣− 1

β
ln

∣∣1−βvy
∣∣+C3 (3.36)

= 1

β

(
ln

∣∣1+βvy
∣∣− ln

∣∣1−βvy
∣∣)+C3 (3.37)

Because log (a)− l og (b) = log ( a
b ), we can rewrite (3.37) as

2g t +C4 = 1

β
ln

∣∣∣∣1+βvy

1−βvy

∣∣∣∣ (3.38)

We are taking the absolute value of the expression inside the natural logarithm because log-
arithms only work with positive numbers. If we are able to show that 1−βvy ≥ 0 over the
complete range of vy (t ) we can get rid of the absolute value signs since we are certain that
the expression will be positive.
To examine the Range of vy (t ), we first acknowledge the fact that |Fg | ≥ |Fr | will always be
true and thus the velocity will always be positive (we have setup the equation of motion in
such a way that positive means downwards/towards the earth.) Therefore, vy (t ) ≥ 0 over the
complete domain 0 ≤ t ≤∞. From (1.3) we also know that terminal velocity V = 9.1[ms−1].
Thus, the Range of vy (t ) is

0 ≤ vy (t ) ≤ 9.1[ms−1]. (3.39)

But what about β? In (3.3) we defined β as follows:

β2 = k

g m
(3.40)

Therefore,

β=
√

k

g m
. (3.41)

We know the k and g , and from yet another raindrop related paper 3 we know that our rain-
drop, which we decided to have a diameter of d = 5[mm], has a mass m = 70[mg]. It follows

3Humphreys, W. J. Physics of the Air. New York: Dover, 1964: 279
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then, that

β=
√

k

g m
. (3.42)

=
√

7.757 ·10−6[kgm−1]

9.81[ms−2] ·7 ·10−5[kg]
(3.43)

= 0.106[m−1 s]. (3.44)

Using terminal velocity V and the calculated value for β, we calculate the maximum value
βvy is able to take as follows

βV = 0.106[m−1 s] ·9.1[ms−1] (3.45)

= 0.9646. (3.46)

Because of (3.46), we know that 1−βvy ≥ 0 holds true over the complete range of vy (t ). And
thus we are able to get rid of the absolute value signs in (3.38), arriving at

2g t +C4 = 1

β
ln

(
1+βvy

1−βvy

)
(3.47)

This is a good time to decide what to do with differential constant C4. C4s physical meaning
is equivalent to that of the start velocity of our model at t = 0. We want the raindrop to start
at vy (t0) = 0[ms−1]. Therefore, we set it to 0.

2gβt = ln

(
1+βvy

1−βvy

)
(3.48)

So far so good. But how are we supposed to solve [3.48] for vy ? Yet another ingenious math
strategy is about to unfold. Let’s recall the very basic concept of what a logarithm is:

3 = log10 (1000) (3.49)

Question: To what power do I raise 10 to get 1000?
Answer: 3.

That’s what logarithms are all about. And it is easy to see how we are able to rearrange the
variables in (3.49) to get

103 = 1000 (3.50)

Applying the same rearrangement operation to (3.48) yields

e2gβt = 1+βvy

1−βvy
. (3.51)
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We’re almost there. Some more variable shuffling

e2gβt = 1+βvy

1−βvy
(3.52)

e2gβt · (1−βvy
)= 1+βvy (3.53)

e2gβt −e2gβtβvy = 1+βvy (3.54)

e2gβt −1 =βvy (1+e2gβt ) (3.55)

and we arrive at the final solution

vy (t ) = 1

β
· e2gβt −1

e2gβt +1
. (3.56)

The graph below shows vy (t ) plotted over the range 0[s] ≤ t ≤ 10[s].
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It seems like vy (t ) is converging to some value. This confirms our intuition about falling
objects. The value vy (t ) is converging to, of course, is the terminal Velocity. We already know
the terminal Velocity V from equation (1.3). But this V isn’t very mathematical. We got it from
a graph on a paper about the terminal velocities of raindrops. We needed it to get a sensible
drag coefficient Cd , but in order to know the true mathematically correct terminal velocity
(let’s call it Vt ), we need to calculate the limit of vy (t ) as t approaches infinity.

l i mt→∞vy (t ) =Vt = l i mt→∞
1

β
· e2gβt −1

e2gβt +1
(3.57)

Multiplying both the nominator and denominator of the right hand side of equation (3.57) by
e−2gβt we get

Vt = l i mt→∞
1

β
· 1−e−2gβt

1+e−2gβt
. (3.58)
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And since

l i mt→∞e−2gβt = 0 (3.59)

equation (3.58) becomes

Vt = 1

β
· 1−0

1+0
. (3.60)

= 1

β
. (3.61)

This turns out to be quite a surprise. The β, which we created merely as a way to keep our
equations from getting too cluttered, turns out to be the terminal Velocity Vt ! We already
calculated β to be 0.106 [m−1 s] in equation (3.44). Using this result to calculate Vt we get

Vt = 1

0.106[m−1 s]
(3.62)

= 9.434[ms−1] (3.63)

The units are spot on as well. Everything’s falling into its place. Remember how we had to
show that 1−βvy ≥ 0 is true for the complete range of vy (t ) to get rid of the absolute value
signs in the equation below?

2g t +C4 = 1

β
ln

∣∣∣∣1+βvy

1−βvy

∣∣∣∣ (3.38)

We barely managed to do so in (3.46), but it wasn’t very mathematical at all. We crudely used
terminal velocity V to vouch for us that vy (t ) wouldn’t get too big and we are indeed able to
get rid of those absolute value signs. Armed with our new shiny Vt = β−1 we can show that
1−βvy ≥ 0 holds true in a much more satisfying way:

1−β ·Vt = 1−β ·β−1 (3.64)

= 0 ≥ 0 (3.65)

And that’s the end of our journey to solve the differential equation of a falling raindrop with
air resistance proportional to the velocity squared.
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